
Approximation of functions by polynomials

Why?

Sometimes the analytic expression of a function is complicated, and it
might be difficult to integrate it or to differentiate it.

Sometimes the analytic expression is not available, the function is known
only at some points at we need to reconstruct the underlyning function.

A way to overcome problems of this kind is to approximate functions with
polynomials (easy to deal with).
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Theorem 1 (Lagrange interpolation)

Let g : [a, b] → R be a smooth enough function. Given k + 1 distinct
points x1, x2, · · · , xk+1 in [c , d ], there exists a unique polynomial Πk(x) of
degree ≤ k such that

Πk(xi ) = g(xi ) i = 1, 2, · · · , k + 1. (∗)

Πk is called “Lagrange interpolant of g with respect to the points
x1, x2, · · · , xk+1”.
The points x1, x2, · · · , xk+1 are called “interpolation nodes”.
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Proof

For proving the existence, we shall write explicitely the expression of Πk .
Let Li (x), i = 1, 2, · · · , k + 1 be k + 1 polynomials, of degree exactly k ,
defined by:

Li (x) =
k+1∏
j=1
j ̸=i

(x − xj)

(xi − xj)
i = 1, 2, · · · , k + 1

For example, for k = 3 and nodes x1, x2, x3, x4:

L1(x) =
(x − x2)(x − x3)(x − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
, L2(x) =

(x − x1)(x − x3)(x − x4)

(x2 − x1)(x2 − x3)(x2 − x4)

L3(x) =
(x − x1)(x − x2)(x − x4)

(x3 − x1)(x3 − x2)(x3 − x4)
, L4(x) =

(x − x1)(x − x2)(x − x3)

(x4 − x1)(x4 − x2)(x4 − x3)

These are characteristic Lagrange polynomials, that fulfil

Li ∈ Pk : Li (xj) = δij =

{
1 for i = j

0 for i ̸= j
i = 1, 2, · · · .k + 1

continue...
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...continuation of the proof.

Claim:

Πk(x) :=
k+1∑
i=1

g(xi )Li (x)

Indeed, it is easy to check that Πk verifies (∗), and this proves existence.
For proving the uniqueness, we observe that the problem of finding the
polynomial

Πk(x) := α1 + α2x . . .+ αk+1x
k

that interpolate g at the k + 1 distinct nodes x1, x2, · · · , xk+1 is a linear
problem, that takes the form:

1 x1 . . . xk
1

1 x2 . . . xk
2

1
... . . .

...
1 xk+1 . . . xk

k+1




α1

α2

...
αk+1

 =


g(x1)
g(x2)

...
g(xk+1)


The linear system has dimension (k + 1)× (k + 1). A squared linear
system has a unique solution for any right hand side if and only if there
exists a solution for any r.h.s. Since we always a solution (existence is
proved above) then the solution is unique.
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Example of characteristic polynomials

Ex. 1: 2 points x1 ̸= x2 (k + 1 = 2)

L1(x) =
(x − x2)

(x1 − x2)
, L2(x) =

(x − x1)

(x2 − x1)

degree k = 1.
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Example of characteristic polynomials
Ex. 2: 3 points x1 ̸= x2 ̸= x3 (k + 1 = 3)

L1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
, L2(x) =

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)

L3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)

degree k = 2.
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Cases of interest

Case 1: g approximated by a constant (a polynomial of degree 0)
1 point: x1 =

a+b
2 (midpoint of the interval)

g(x) ≃ Π0(x) = g(x1)

Case 2: g approximated by a polynomial of degree 1(straight line)
2 point: x1 = a, x2 = b

g(x) ≃ Π1(x) = g(x1)L1(x) + g(x2)L2(x)

= g(x1)
(x − x2)

(x1 − x2)
+ g(x2)

(x − x1)

(x2 − x1)

Remark: in both cases, if we change the nodes we obtain a different
interpolant
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Example 1
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Example 2
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Exercise
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General interpolation error

In both cases, the approximation induces an error that we want to
estimate. How big is it? Is the approximation satisfactory? The following
Theorem gives a precise expression of the error.

Theorem 2

Let g ∈ C k+1([a, b]), and let x1, x2, · · · , xk+1 be k + 1 distinct points in
[a, b]. For any generic point x ∈ [a, b] there exists a ξ ∈ [a, b] (depending
on x) such that the interpolation error is given by

ek(x) := g(x)− Πk(x) =
g (k+1)(ξ)

(k + 1)!

k+1∏
j=1

(x − xj) (1)
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Proof.

Let x be fixed and t ∈ [a, b]. Define the function ωk+1(t) =
∏k+1

j=1 (t − xj) let us
introduce

G (t) := ek(t)− ωk+1(t)ek(x)/ωk+1(x).

Since g ∈ C k+1([a, b]) and ωk+1 is a polynomial, G ∈ C k+1([a, b]) and vanishes at
the k + 2 distinct points x1, x2, · · · , xk+1 and x . Indeed:

G (xi ) = ek(xi )− ωk+1(xi )ek(x)/ωk+1(x) = 0 i = 1, 2, · · · , k + 1

G (x) = ek(x)− ωk+1(x)ek(x)/ωk+1(x) = 0

Thanks to the meanvalue theorema, G ′ will have k + 1 distinct zeros, and going
recursively, G (j) will have k +2− j distinct zeros. Hence, G (k+1) will have one zero,

say ξ. Since ω
(k+1)
k+1 (t) = (k + 1)! and e

(k+1)
k (t) = g (k+1)(t) we obtain the result

G (k+1)(ξ) = g (k+1)(ξ)− (k + 1)!ek(x)/ωk+1(x) = 0

and the proof is concluded.

ahttps://en.wikipedia.org/wiki/Mean value theorem
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From (1) we can deduce for instance the following bound:

max
[a,b]

|ek(x)| ≤
(b − a)k+1

(k + 1)!
max
x∈[a,b]

|g (k+1)(x)| (∗)

If we know the position of the nodes we can have sharper estimates for

the term
k+1∏
j=1

(x − xj) that appears in (1). For instance, for the Case 1 we

would obtain

Case 1 (constant approximation): Relation (1) in this case gives

e0(x) = g ′(ξ)(x − x1) x1 =
a+ b

2

No matter where x is situated within [a, b], its distance from the midpoint
will be smaller than or equal to the length of half the interval (that is,
(b − a)/2). Hence

=⇒ max
x∈[a,b]

|e0(x)| ≤
b − a

2
max
x∈[a,b]

|g ′(x)| (2)

((b − a)/2 instead of b − a)
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Case 2 (linear approximation): For x1 = a and x2 = b we can observe that
the function x → |(x − a)(x − b)|, in the interval [a, b] has its maximum
for x = (a+ b)/2 and such a maximum is ((b − a)/2)2. Hence

max
x∈[a,b]

|e1(x)| ≤
(b − a)2

2! · 4
max
x∈[a,b]

|g ′′(x)| (3)

(and we have (b − a)2/8 instead of (b − a)2/2).
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Runge function
Apparently, increasing the degree k of the Lagrange polynomial should
improve the error, which should become smaller and smaller. This is not
always the case if the nodes are equally spaced. The classical example is
given by the so-called Runge’s function:

g(x) =
1

1 + x2

This is what happens
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A simple remedy: Composite Lagrange interpolation

Use of Lagrange interpolation (piecewise) to have a good approximation of
a function.

Given f : [a, b] → R (smooth enough), subdivide [a, b] in N subintervals,
for simplicity of notation all equal. We have then a uniform subdivision of
[a, b] into intervals of length h = (b − a)/N. In each subinterval we
approximate f with a Lagrange interpolant polynomial.

To fix ideas, let us consider again Cases 1 and 2.

Case 1: N → h = (b − a)/N, x1 = a, x2 = x1 + h, · · · , xN+1 = b

I1 = [x1, x2], · · · , Ij = [xj , xj+1], · · · , IN = [xN , xN+1]

xMj =midpoint of the interval Ij : xMj = (xj + xj+1)/2

f (x)|[a,b] ≃ f0(x) piecewise constant function given by

f0(x)|Ij = f (xMj ) j = 1, 2, · · · ,N
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Piecewise constant interpolation
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Let us study the error E0(x) := f (x)− f0(x) x ∈ [a, b]
The maximum error (in absolute value) will be achieved on one
subinterval, say I i . Then,

max
x∈[a,b]

|E0(x)| = max
x∈[a,b]

|f (x)− f0(x)| = max
x∈I k

|f (x)− f0(x
M
k )|

Using the mean value theorem1, here exists c between x and xMk such that:

f (x)− f0(x
M
k )

x − xMk
= f ′(c)

Then f (x)− f0(x
M
k ) = (x − xMk )f ′(c) and2

max
x∈[a,b]

|E0(x)| = max
x∈I k

|f (x)− f0(x
M
k )| ≤ h

2
max
c∈I k

|f ′(c)| ≤ h

2
max
c∈[a,b]

|f ′(c)|

If f ′ exists and is bounded, the interpolation error goes to zero as C h
1https://en.wikipedia.org/wiki/Mean value theorem
2Or, use (2), with [a, b] = [xi , xi+1] =⇒ b − a = h to get the blue estimate
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Case 2: N → h = (b − a)/N, x1 = a, x2 = x1 + h, · · · , xN+1 = b

I1 = [x1, x2], · · · , Ij = [xj , xj+1], · · · , IN = [xN , xN+1]

f (x)|[a,b] ≃ f1(x) piecewise linear function which, on each interval Ij , is the
Lagrange interpolant of degree ≤ 1 with respect to the endpoints of Ij , i.e.,

f1(x)|Ij = f (xj)
(x − xj+1)

(xj − xj+1)
+ f (xj+1)

(x − xj)

(xj+1 − xj)
j = 1, 2, · · · ,N

Using the bound (3) for the error E1(x) = f (x)− f1(x) and proceeding as
before we then obtain

max
[a,b]

|E1(x)| ≤
h2

8
max
[a,b]

|f ′′(x)| = C h2 C =
max[a,b] |f ′′(x)|

8

Hence: if f ′′ exists and is bounded, the interpolation error goes to zero
quadratically with h (if you halve h the error is divided by four), and we
can choose h as small as we want!
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Piecewise linear interpolation
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